Artificial Intelligence in Radiology

Ahmed Hosny



Deep Learning

Applications in Medical Imaging

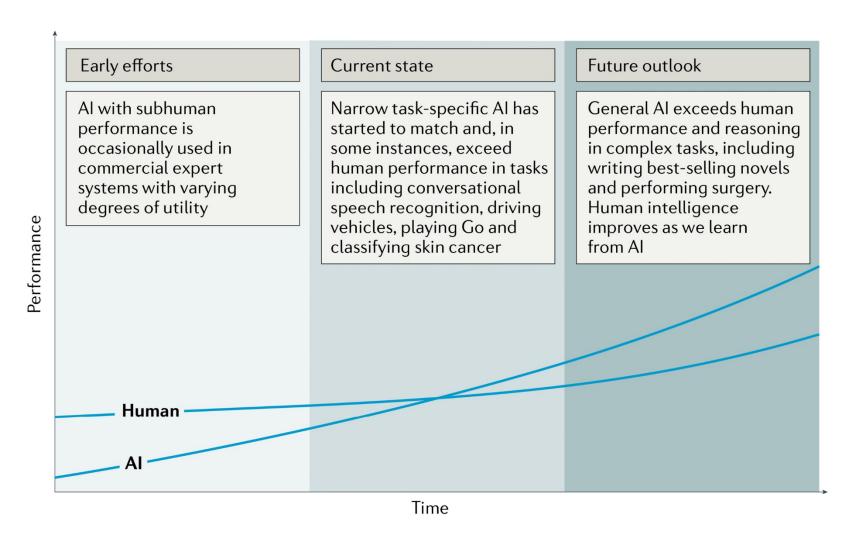
Challenges

Deep Learning

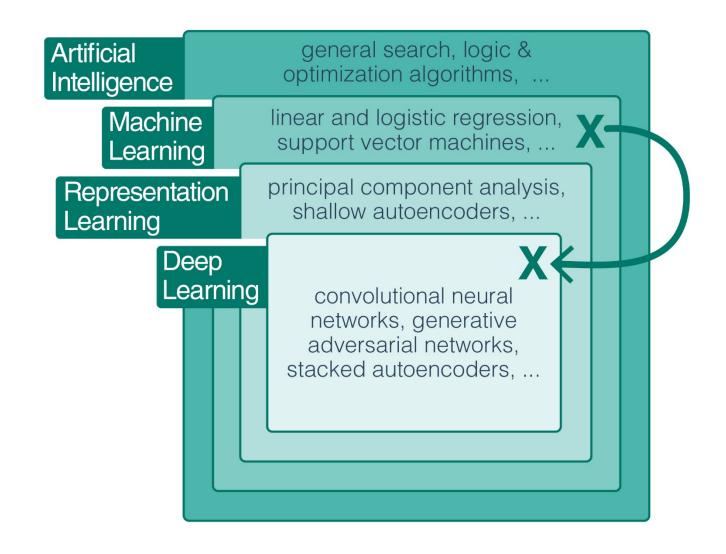
Applications in Medical Imaging

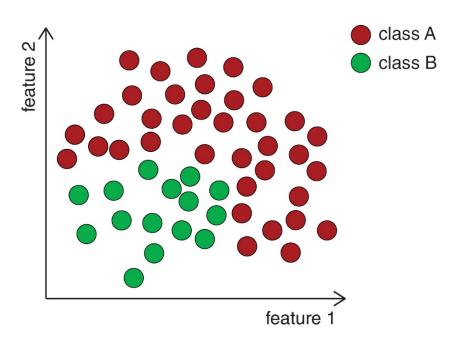
Challenges

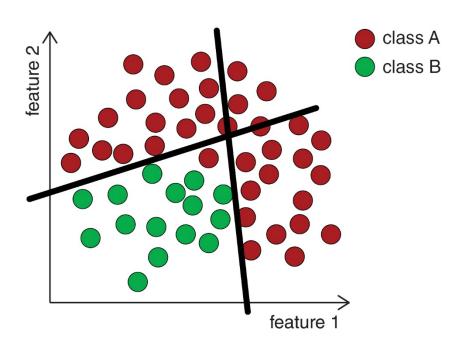
Artificial vs Human Intelligence

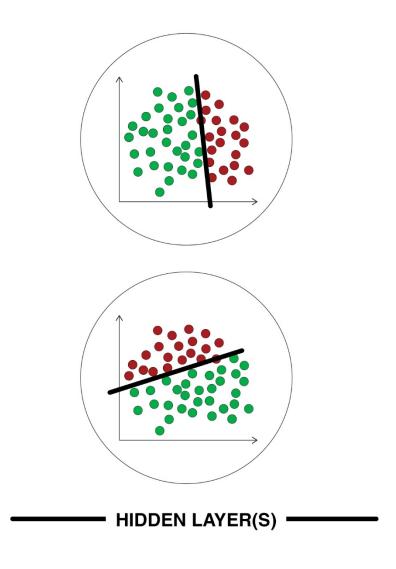


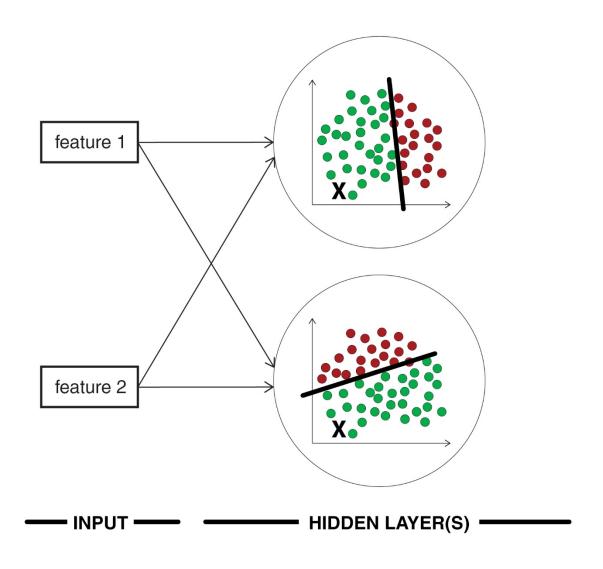
Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz & Hugo JWL Aerts

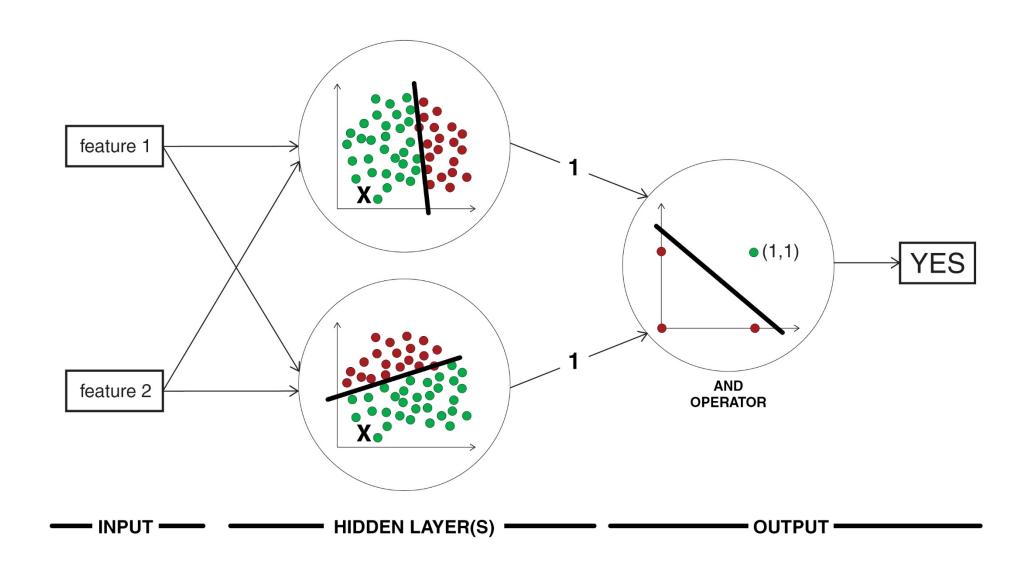


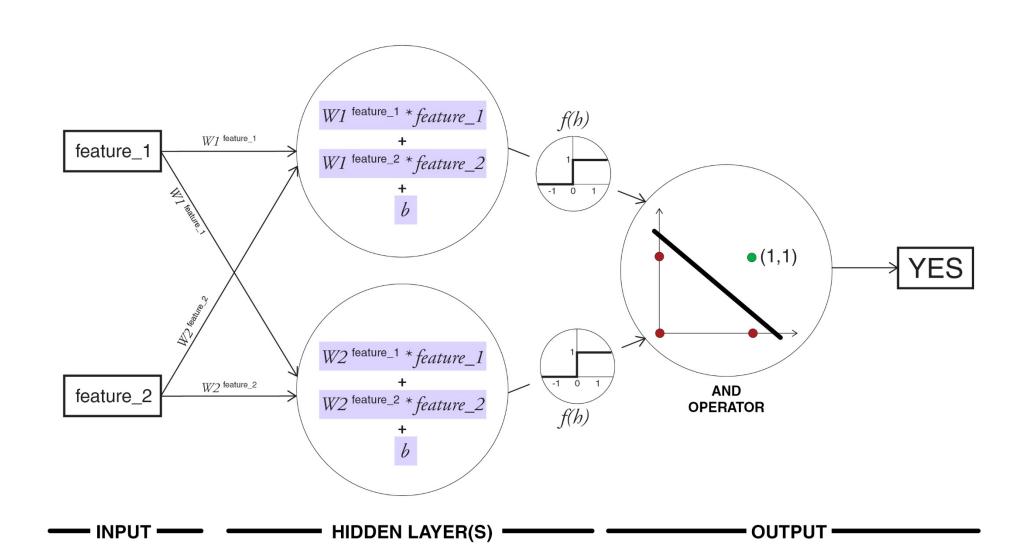






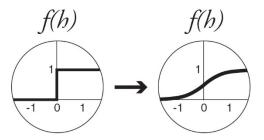






Backpropagation & Gradient Descent in Neural Networks

NATURE VOL. 323 9 OCTOBER 1986 LETTERSTONATURE 533



Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
† Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelohia 15213. USA

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal 'hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The pablity to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure'.

There have been many attempts to design self-organizing neural networks. The aim is to find a powerful synaptic modification rule that will allow an arbitrarily connected neural network to develop an internal structure that is appropriate for a particular task domain. The task is specified by giving the desired state vector of the output units for each state vector of the input units. If the input units are directly connected to the output units it is relatively easy to find learning rules that iteratively adjust the relative strengths of the connections so as to progressively reduce the difference between the actual and desired output vectors? Learning becomes more interesting but

more difficult when we introduce hidden units whose actual or desired states are not specified by the task. (In perceptrons, there are 'feature analysers' between the input and output that are not true hidden units because their input connections are fixed by hand, so their states are completely determined by the input vector: they do not learn representations. The learning procedure must decide under what circumstances the hidden units should be active in order to help achieve the desired input-output behaviour. This amounts to deciding what these units should represent. We demonstrate that a general purpose and relatively simple procedure is powerful enough to construct appropriate internal representations.

The simplest form of the learning procedure is for layered networks which have a layer of input units at the bottom; any number of intermediate layers; and a layer of output units at the top. Connections within a layer of from higher to lower layers are forbidden, but connections can skip intermediate layers. An input vector is presented to the network by setting the states of the input units. Then the states of the units in each layer are determined by applying equations (1) and (2) to the connections coming from lower layers. All units within a layer have their states set in parallel, but different layers have their states set a pearallel, but offerent layers have their states set sequentially, starting at the bottom and working upwards until the states of the output units are determined.

The total input, x_j , to unit j is a linear function of the outputs, y_i , of the units that are connected to j and of the weights, w_{ji} , on these connections.

Units can be given biases by introducing an extra input to each unit which always has a value of 1. The weight on this extra input is called the bias and is equivalent to a threshold of the opposite sign. It can be treated just like the other weights.

A unit has a real-valued output, y_j, which is a non-linear function of its total input

$$y_j = \frac{1}{1 + e^{-x_j}}$$
 (2)

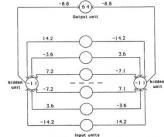


Fig. 1 A network that has learned to detect mirror symmetry in the input vector. The numbers on the arcs are weights and the numbers inside the nodes are biases. The learning required 1,425 sweeps through the set of 64 possible input vectors, with the weights being adjusted on the basis of the accumulated gradient after each sweep. The values of the parameters in equation (9) were $\varepsilon = 0.1$ and $\alpha = 0.9$. The initial weights were random and were uniformly distributed between -0.3 and 0.3. The key property of this solution is that for a given hidden unit, weights that are symmetric about the middle of the input vector are equal in magnitude and opposite in sign. So if a symmetrical pattern is presented, both hidden units will receive a net input of 0 from the input units, and, because the hidden units have a negative bias, both will be off. In this case the output unit, having a positive bias, will be on. Note that the weights on each side of the midpoint are in the ratio 1:2:4. This ensures that each of the eight patterns that can occur above the midpoint sends a unique activation sum to each hidden unit, so the only pattern below the midpoint that can exactly balance this sum is the symmetrical one. For all non-symmetrical patterns, both hidden units will receive non-zero activations from the input units. The two hidden units have identical patterns of weights but with opposite signs, so for every non-symmetric pattern one hidden unit will come on and suppress the output unit.

It is not necessary to use exactly the functions given in equations (1) and (2). Any input-output function which has a bounded derivative will do. However, the use of a linear function for combining the inputs to a unit before applying the nonlinearity greatly simplifies the learning procedure.

The sim is to find a set of weights that ensure that for each input vector the output vector produced by the network is the same as (or sufficiently close to) the desired output vector. If there is a fixed, finite set of linput-output cases, the total error in the performance of the network with a particular set of weights can be computed by comparing the actual and desired output vectors for every case. The total error, E, is defined as

 $E = \frac{1}{2} \sum \sum (y_{j,c} - d_{j,c})^2$

where c is an index over cases (input-output pairs), j is an index over output units, y is the actual state of an output unit and d is its desired state. To minimize E by gradient descent it is necessary to compute the partial derivative-of-E-with respect to each weight in the network. This is simply the sum of the partial derivatives for each of the input-output cases. For a given case, the partial derivatives of the error, with respect to each weight are computed in two passes. We have already described the forward pass in which the units in each layer have their states determined by the input they receive from units in lower layers using equations (1) and (2). The backward pass which propagates derivatives from the top layer back to the bottom one is more complicated.

NATURE VOL. 323 9 OCTOBER 1986

Fig. 2 Two isomorphic family trees. The information can be expressed as a set of triples of the form (person lycleationship) (person 2), where the possible relationships are (father, mother, husband, wife, son, daughter, uncle, annt, brother, sister, nephew, niece). A layered net can be said to know these triples if it can first two terms are encoded by activating two of the input units, and the network must then complete the proposition by activating the output unit that represents the third term.

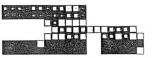


Fig. 3 Activity levels in a five-layer network after it has learned. The bottom layer has 24 input units on the left for representing (person I) and 12 input units on the right for representing the relationship. The white squares inside these two groups show the activity levels of the units. There is one active unit in the first group representing Colli and one in the second group representing Colli and one in the second group representing the relationship has-nunt. Each of the two input groups is totally connected to its own group of 6 units in the second layer. These groups learn to encode people and relationships as distributed patterns of activity. The second layer is totally connected to the central layer of 12 units, and these are connected to the penultimate layer of 6 units. The activity in the penultimate layer must activate the correct output units, each of which stands for a particular back dots the secure. Coli has two units Both the input units and the output units are laid out spatially with the English people in one row and the isomerphic Italians immediately below.

The backward pass starts by computing $\partial E/\partial y$ for each of the output units. Differentiating equation (3) for a particular case, c, and suppressing the index c gives

$$\partial E/\partial y_i = y_i - d_i$$
 (4)

We can then apply the chain rule to compute $\partial E/\partial x_j$

$$\partial E/\partial x_i = \partial E/\partial y_i \cdot dy_i/dx_i$$

Differentiating equation (2) to get the value of $\mathrm{d}y_j/\mathrm{d}x_j$ and substituting gives

$$\partial E/\partial x_t = \partial E/\partial y_i \cdot y_i (1-y_i)$$
 (5)

This means that we know how a change in the total input x to an output unit will affect the error. But this total input is just a linear function of the states of the lower level units and it is also a linear function of the weights on the connections, so it is easy to compute how the error will be affected by changing these states and weights. For a weight w_{μ_1} from i to j the deficient i to j the

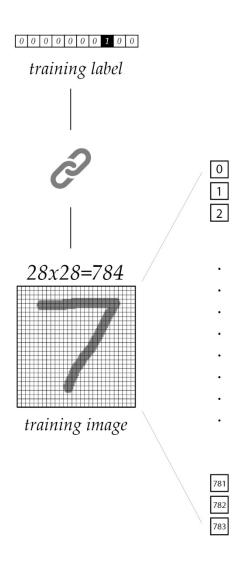
$$\partial E/\partial w_{ji} = \partial E/\partial x_j \cdot \partial x_j/\partial w_{ji}$$

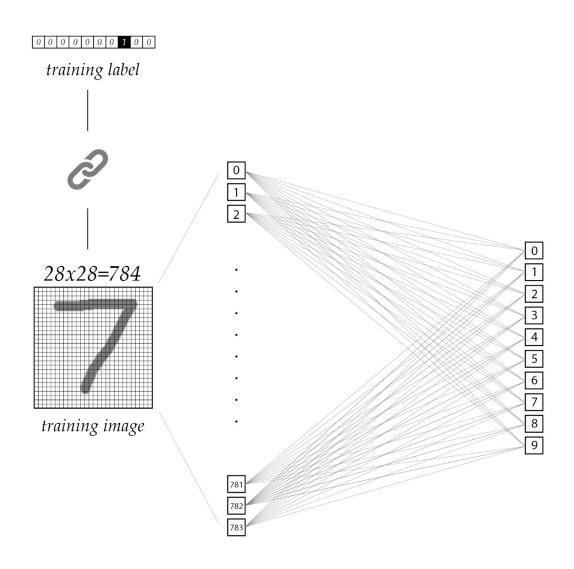
= $\partial E/\partial x_j \cdot y_i$ (6)

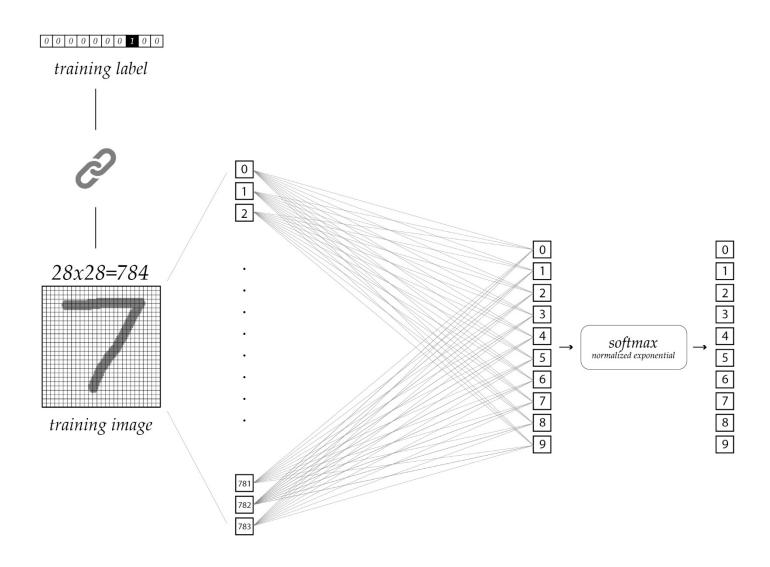
and for the output of the i^{th} unit the contribution to $\partial E/\partial y_i$

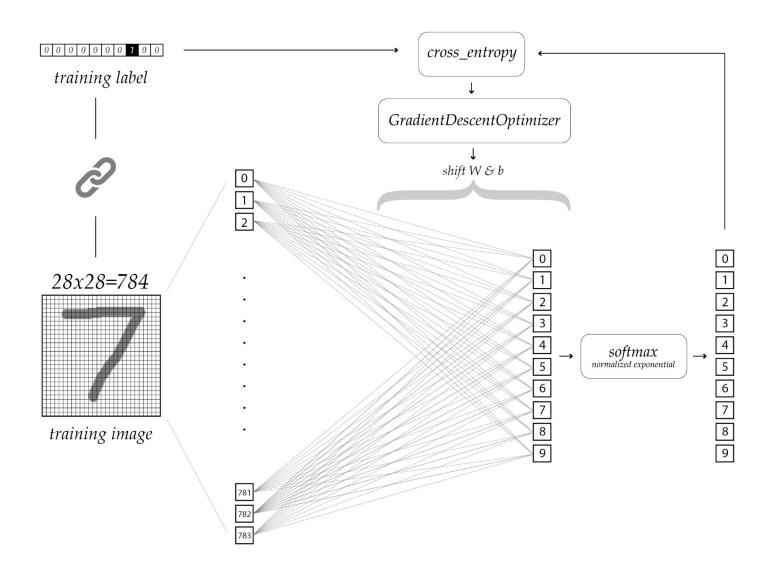
† To whom correspondence should be address

David E Rumelhart, Geoffrey E Hinton & Ronald J Williams

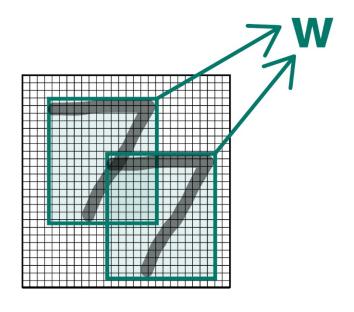




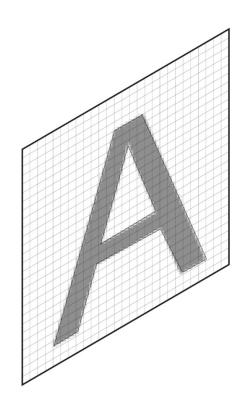




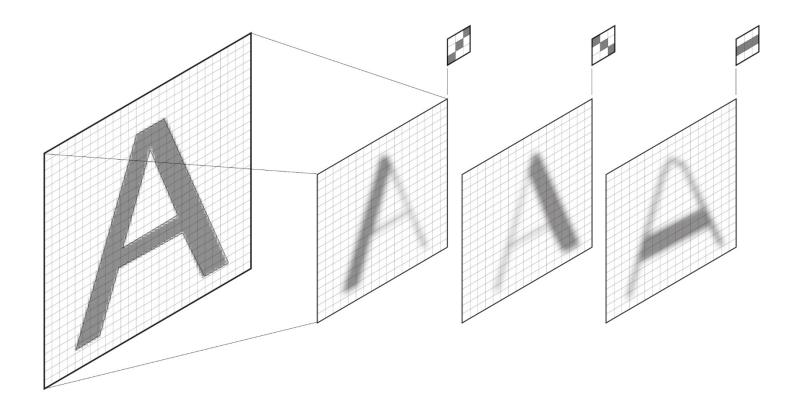
Weight Sharing



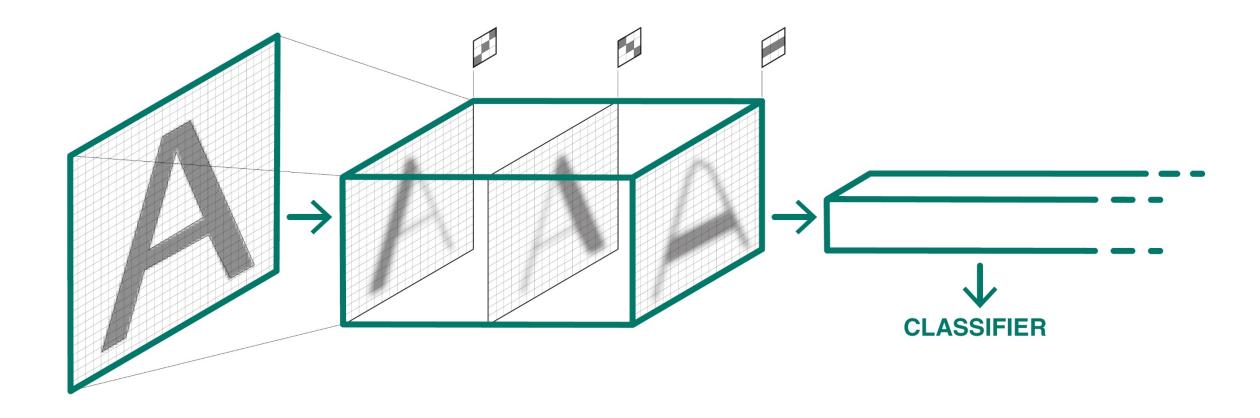
Convolutions



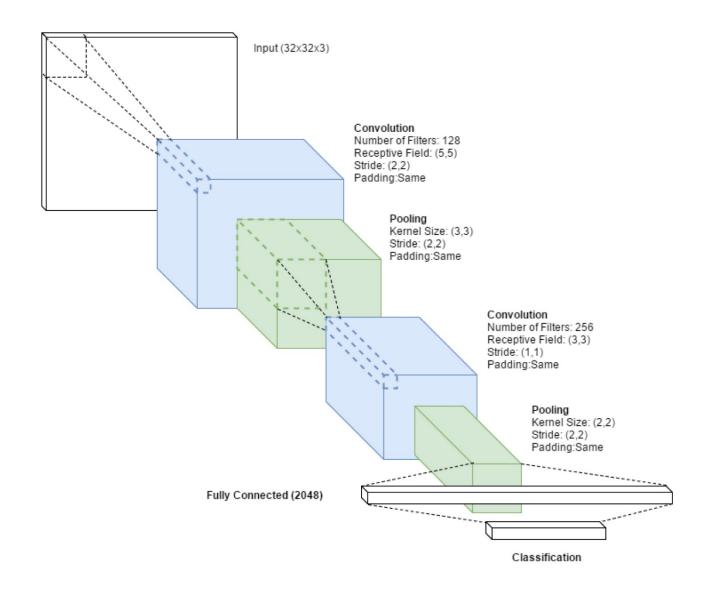
Convolutions



Convolutions



Convolutional Neural Networks



Neocognitron

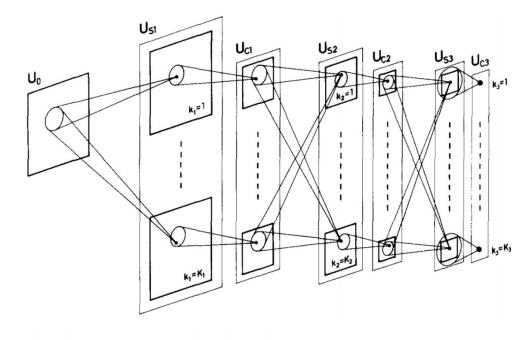


Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

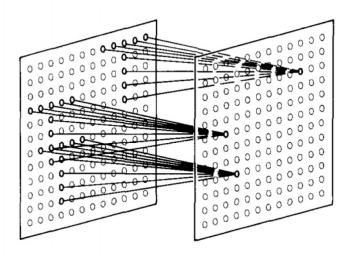


Fig. 3. Illustration showing the input interconnections to the cells within a single cell-plane

Kunihiko Fukushima

Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position **Biological Cybernetics - 1980**

LeNet-5

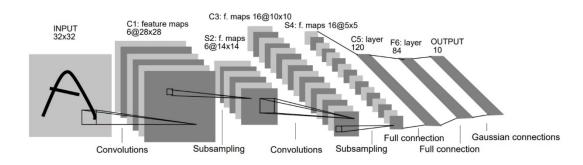


Fig. 1. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

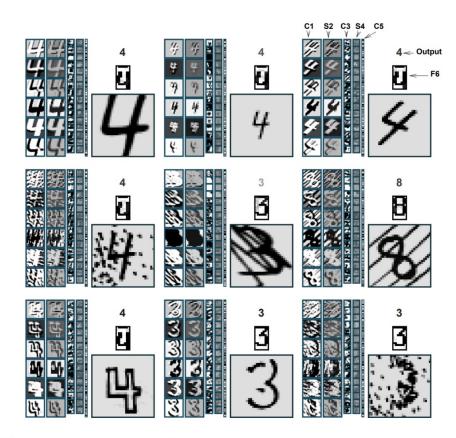
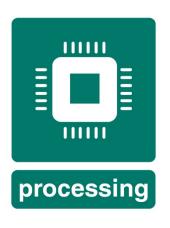
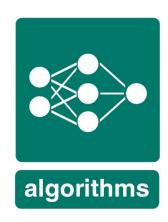


Fig. 4. Examples of unusual, distorted, and noisy characters correctly recognized by LeNet-5. The grey-level of the output label represents the penalty (lighter for higher penalties).

Yann LeCun, Patrick Haffner, Léon Bottou & Yoshua Bengio

Revival of Neural Networks





AlexNet

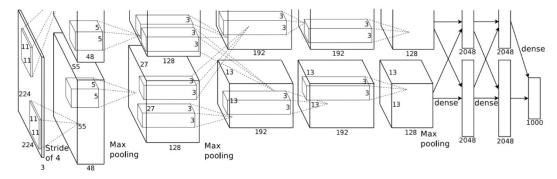


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Alex Krizhevsky, Ilya Sutskever & Geoffrey E Hinton

AlexNet @ ImageNet

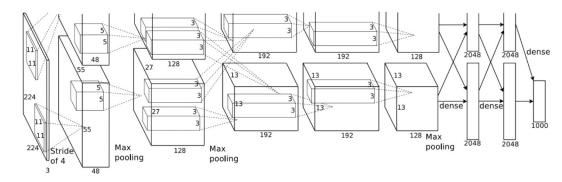
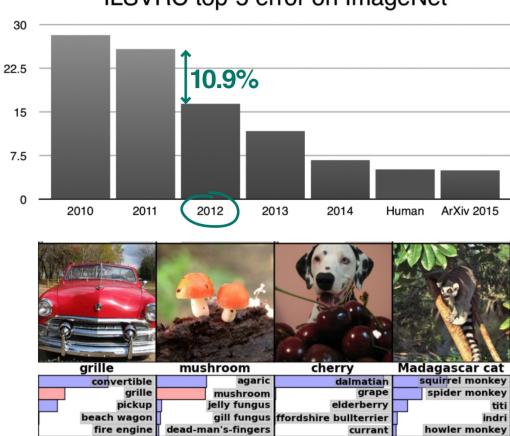
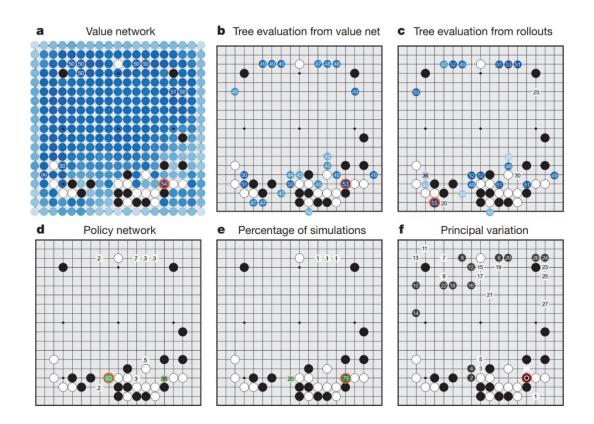


Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

ILSVRC top-5 error on ImageNet



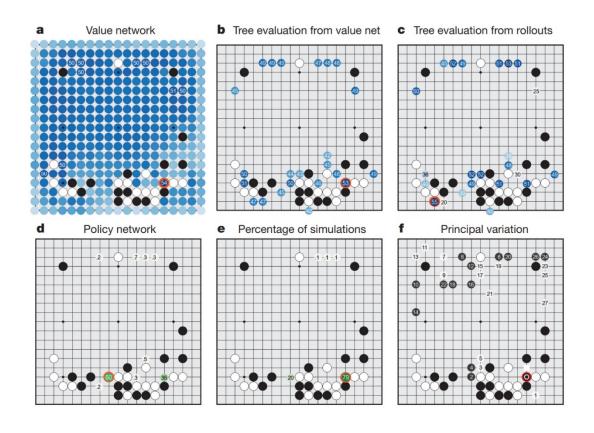
Alpha Go

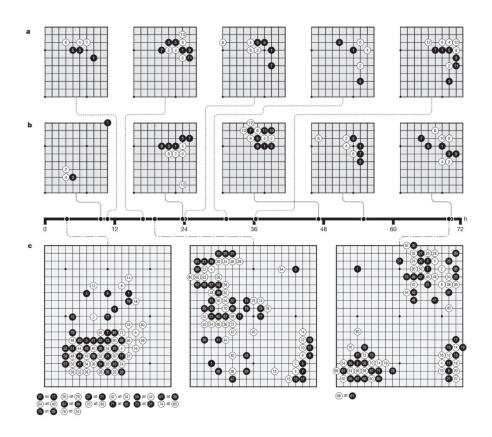


David Silver, Aja Huang, Chris J Maddison, et al.

Mastering the Game of Go with Deep Neural Networks and Tree Search **Nature - 2016**

Alpha Go





David Silver, Aja Huang, Chris J Maddison, et al.

David Silver, Julian Schrittwieser, Karen Simonyan, et al.

Mastering the Game of Go with Deep Neural Networks and Tree Search **Nature - 2016**

Mastering the Game of Go Without Human Knowledge Nature - 2017

Open-Source Tools

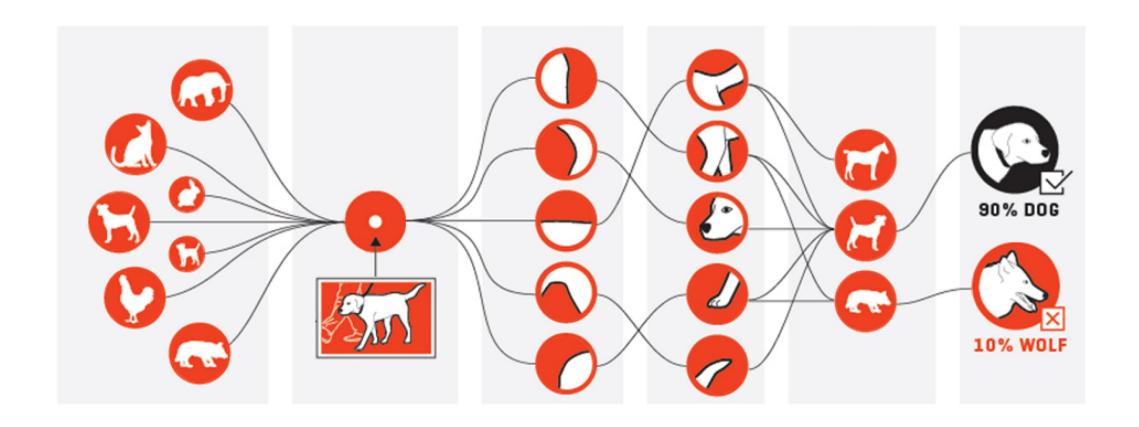
houseroad Rename ZFNet to ZFNet-512 (#36)		Latest commit 3be4824 11 hours ag
bvlc_alexnet	Update bvlc_alexnet model	4 months ag
bvlc_googlenet	Add the value_info.json for the remaining of the models except style \dots	3 months ag
bvlc_reference_caffenet	Add the value_info.json for the remaining of the models except style \dots	3 months ag
bvlc_reference_rcnn_ilsvrc13	Add the value_info.json for the remaining of the models except style \dots	3 months ag
densenet121	Add DenseNet-121 model	4 months ag
detectron	Add Detectron e2e_faster_rcnn_R-50-C4_2x model	3 months ag
inception_v1	Add Inception models	4 months a
inception_v2	Add Inception models	4 months ag
resnet50	Add ResNet-50 model	4 months a
scripts	Add Detectron e2e_faster_rcnn_R-50-C4_2x model	3 months ag
squeezenet	Correct SqueezeNet value_info to 227x227	3 months a
style_transfer	Add other style transfer models	4 months ag
vgg19	Add VGG models	4 months a
zfnet512	Rename ZFNet to ZFNet-512 (#36)	11 hours ag
gitattributes	Remove squeezenet-specific lines from .gitattributes.	4 months a
LICENSE	Add Apache 2.0 license	4 months ag
README.md	Update README to describe subdirectory access	3 months a

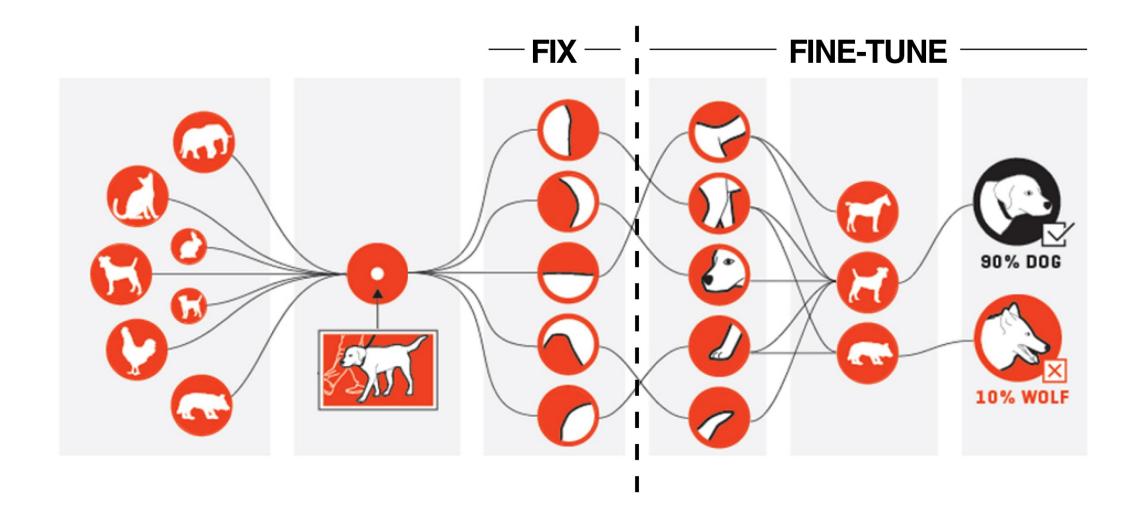
Yangqing Jia, Evan Shelhamer, Jeff Donahue, et al.

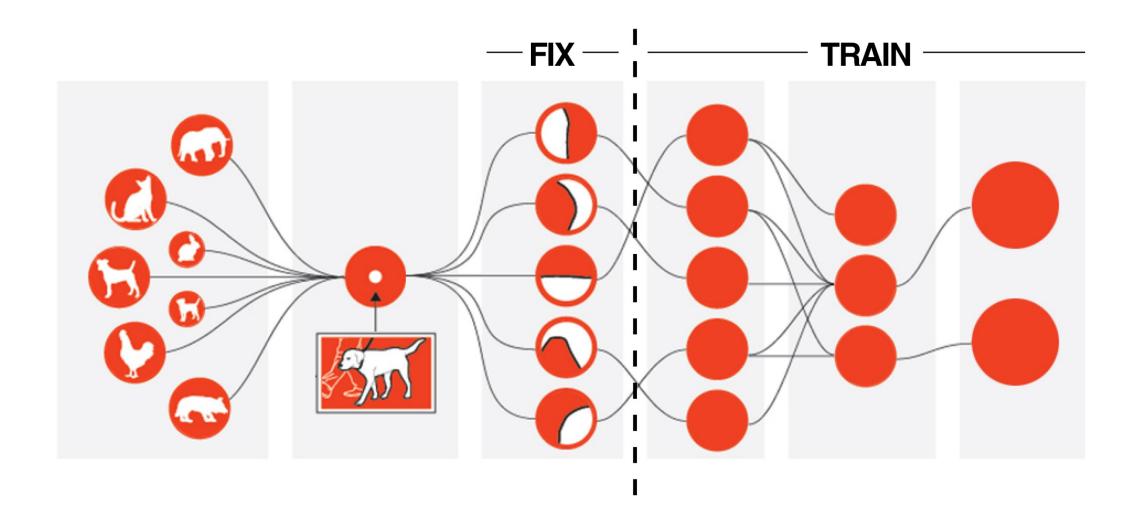
Caffe: Convolutional Architecture for Fast Feature Embedding arxiv.org/abs/1408.5093

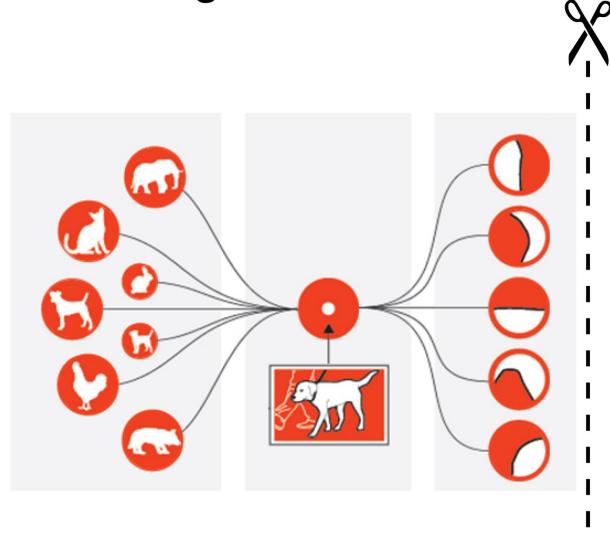
Misc.

Open-Source Deep Learning Libraries github.com









Deep Learning

Applications in Medical Imaging

Challenges

Early Logic and Statistical Pattern Recognition in Medicine

3 July 1959, Volume 130, Number 3366

SCIENCE

Reasoning Foundations of Medical Diagnosis

Symbolic logic, probability, and value theory aid our understanding of how physicians reason.

Robert S. Ledley and Lee B. Lusted

The purpose of this article is to analyze the complicated reasoning processes inherent in medical diagnosis. The importance of this problem has received recent emphasis by the increasing interest in the use of electronic computers as an aid to medical diagnostic processes (1, 2). Before computers can be used effectively for such purposes, however, we need to know more about how the physician makes a medical diagnosis.

fitted into a definite disease category, or that it may be one of several possible diseases, or else that its exact nature cannot be determined." This, obviously, is a greatly simplified explanation of the process of diagnosis, for the physician might also comment that after seeing a patient he often has a "feeling about the case." This "feeling," although hard to explain, may be a summation of his impressions concerning the way the data If a physician is asked, "How do you seem to fit together, the patient's reliaance are the ones who do remember and consider the most possibilities."

Computers are especially suited help the physician collect and process clinical information and remind him of diagnoses which he may have overlooked. In many cases computers may be as simple as a set of hand-sorted cards, whereas in other cases the use of a large scale digital electronic computer may be indicated. There are other ways in which computers may serve the physician, and some of these are suggested in this paper For example, medical students migh find the computer an important aid in learning the methods of differential diagnosis. But to use the computer thus we must understand how the physician makes a medical diagnosis. This, then, brings us to the subject of our investiga tion: the reasoning foundations of med ical diagnosis and treatment.

Medical diagnosis involves processe that can be systematically analyzed, a well as those characterized as "intangible." For instance, the reasoning foundations of medical diagnostic procedures are precisely analyzable and can be separated from certain considered intangible judgments and value decisions. Such a separation has several important advantages. First, systematization of the rea-

make a medical diagne "increasing interest in the use of tion of the process m "First, I obtain the patient's history, phy and laboratory tests. electronic computers as aid to medical diagnostic processes" make a differential the diseases which th

reasonably resemble. disease after another from the list until it becomes apparent that the case can be

other data of less in

Dr. Ledley is a part-time member of the staff of the National Anadomy of Genores-National Re-pression of the Staff of Control Staff of the Staff of

be integrated by the physician with a large store of possible diseases. It is widely believed that errors in differential diagnosis result more frequently from errors of omission than from other sources. For instance, concerning such errors of omission, Clendening and Hashinger (3) say: "How to guard against incompleteness I do not know. But I do know that, in my judgment, the most brilliant diagnosticians of my acquaint-

can be developed. However, a consider as the first step in the development of practical applications.

The reasoning foundations of medical diagnosis and treatment can be most precisely investigated and described in terms of certain mathematical techniques. Before material to illustrate these techniques was selected, many of the New England Journal of Medicine

VOL, 81 NO. 2

Radiology

AUGUST 1963

a monthly journal devoted to clinical radiology and allied sciences PUBLISHED BY THE RADIOLOGICAL SOCIETY OF NORTH AMERICA. INC.

The Coding of Roentgen Images for Computer Analysis as Applied to Lung Cancer

GWILYM S. LODWICK, M.D., THEODORE E. KEATS, M.D., and JOHN P. DORST, M.D.

THIS PAPER WILL DESCRIBE a concept cause, against a background of air density, of converting the visual images on the intimate details of the relationship roentgenograms into numerical sequences between tumor and host may be faithfully that can be manipulated and evaluated reproduced roentgenographically.

'a concept of converting the determine the visual images on roentgenograms an electronic into numerical sequences... digital comp by the digital computer... to determine the significance of certain radiographic findings in out these accuracy

expanding medical knowledge.

radiological data, is a logical approach group of cases are shown in Table I. to the control of a segment of exponentially Less than 1 per cent of the total number were lost to follow-up. The absolute We have chosen to apply this concept survival rate of 1.3 per cent for this highly to roentgenograms of lung cancer be- malignant tumor is even lower than that

Robert S Ledley & Lee B Lusted

Reasoning Foundations of Medical Diagnosis **Science - 1959**

Gwilym S Lodwick, Theodore E Keats & John P Dorst

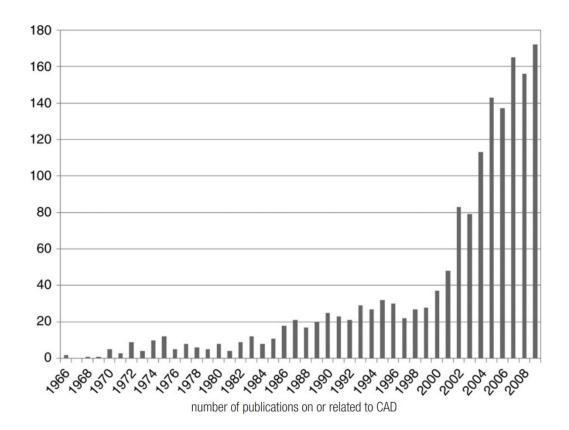
The Coding of Roentgen Images for Computer Analysis as Applied to Lung Cancer Radiology - 1963

¹ From the Department of Radiology, University of Missouri School of Medicine, Columbia, Mo. (Drs. Lodwick and Keats), and the Department of Radiology, University of Iowa College of Medicine, Iowa City, Iowa. Dr. Dorst is now at the University of Cincinnati,

This investigation was supported in part by the James Picker Foundation on recommendation of the Committee on Radiology, National Academy of Sciences-National Research Council. Presented in part at the Forty-third Annual Meeting of the Radiological Society of North America, Chicago, Ill., Nov. 17–22, 1957. Submitted for publication in October 1962.

Computer-Aided Diagnosis

number of publications on or related to CAD



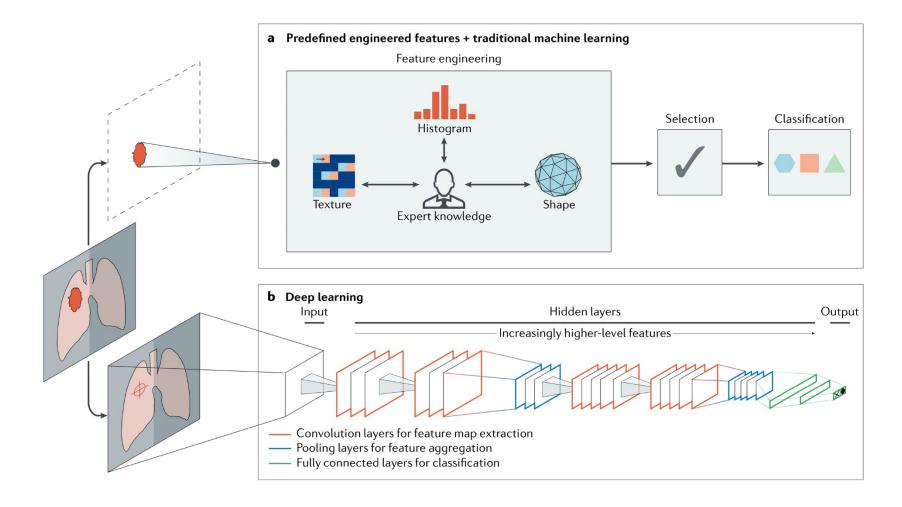
CAD systems approved or cleared by FDA in the US

Name/Company	What It Does	Type of Approval	First and Last Date
Imagechecker/R2 Technology, Sunnyvale, Calif; Hologic, Bedford, Mass	Mass and microcalcification detection on mammograms	PMA	6/1998–9/2007
Logicon caries detection/GA Industries, Rancho Palos Verdes, Calif	Detection of caries on intraoral radiographs	PMA	9/1998–1/2007
Rapidscreen, Onguard/Riverain Medical, Miamisburg, Ohio	Nodule detection on chest radiographs	PMA	7/2001–8/2007
SecondLook/Icad, Nashua, NH,	Mass and microcalcification detection on mammograms	PMA	1/2002-10/2008
LungCare Nodule Enhanced Viewing/Siemens, Erlangen, Germany	Nodule detection and volumetry at chest CT	510(k)	11/2003
MedicLung/MedicSight, London, England	Nodule segmentation and viewing at chest CT	510(k)	12/2003
CT Colonography/General Electric, Fairfield, Conn	Detection of polyps at CT	510(k)	5/2004
Imagechecker-CT/R2 Technology, Sunnyvale, Calif	Detection of pulmonary embolism at chest CT	510(k)	6/2004
Lung CAR/MedicSight, London, England	Nodule detection and volumetry at chest CT	510(k)	7/2004
Colon Car/MedicSight, London, England	Detection of polyps at CT	510(k)	10/2004
Syngo Colonography/Siemens, Erlangen, Germany	Detection of polyps at CT	510(k)	10/2004
IQQA/EDDA, Princeton, NJ	Nodule detection on chest radiographs	510(k)	10/2004
Kodak Mammography CAD Engine/Carestream, Rochester, NY	Mass and microcalcification detection on mammograms	PMA	11/2004–3/2007
Advanced Lung Analysis 2/General Electric, Fairfield, Conn	Nodule detection and volumetry at chest CT	510(k)	11/2004
Syngo Lung CAD/Siemens, Erlangen, Germany	Nodule detection and volumetry at chest CT	510(k)	10/2006
ImageChecker CT CAD/Hologic, Bedford, Mass	Nodule detection and volumetry at chest CT	510(k)	12/2007

Bram van Ginneken, Cornelia M Schaefer-Prokop & Mathias Prokop

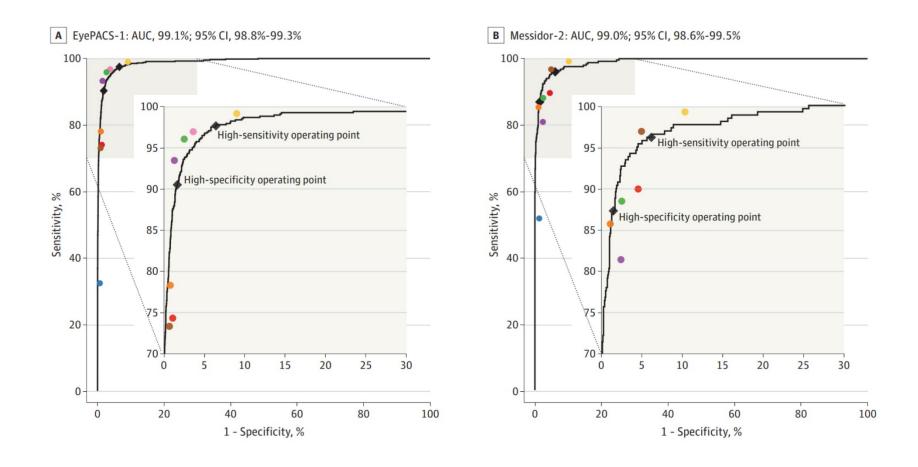
Computer-aided Diagnosis: How to Move from the Laboratory to the Clinic Radiology - 2011

Deep Learning



Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz & Hugo JWL Aerts

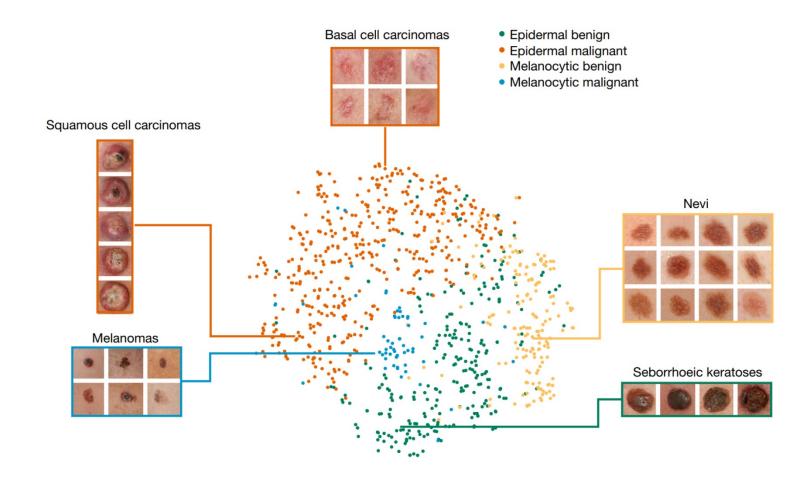
Diabetic Retinopathy Detection



Varun Gulshan, Lily Peng, Marc Coram, et al.

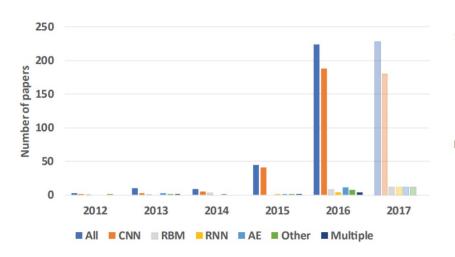
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs The Journal of the American Medical Association (JAMA) - 2016

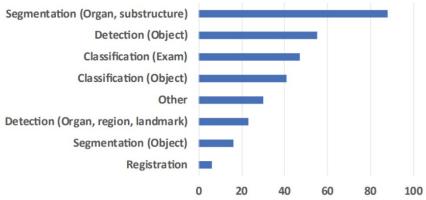
Skin Lesion Classification



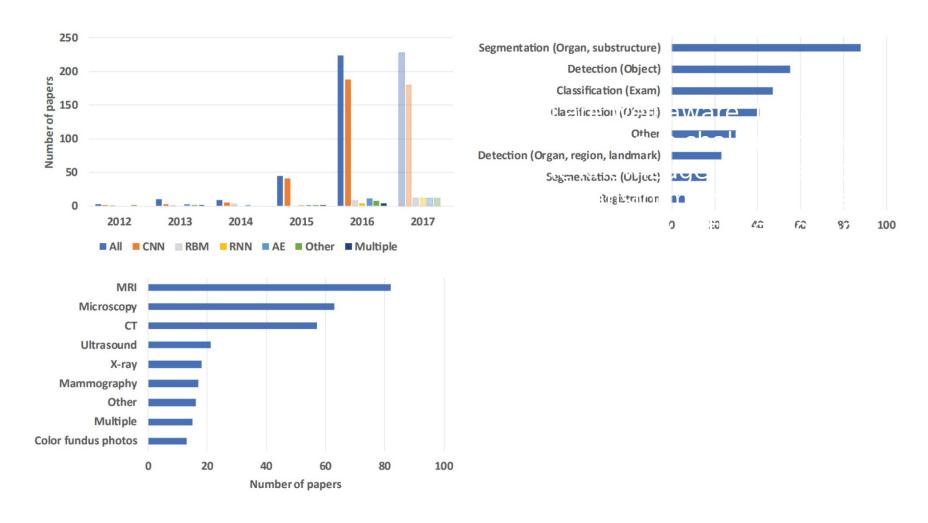
Andre Esteva, Brett Kuprel, Robert A Novoa, et al.

Deep Learning in Medical Imaging





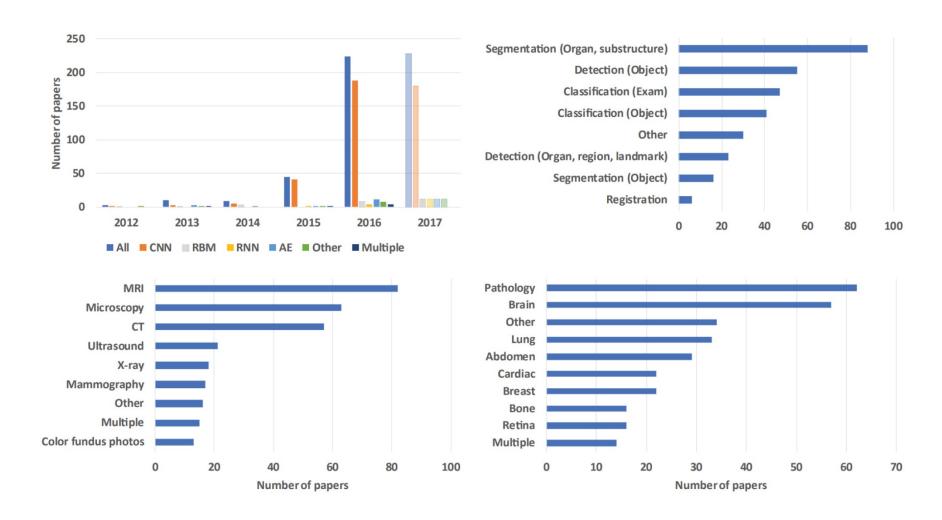
Deep Learning in Medical Imaging



Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, et al.

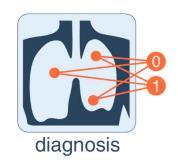
A Survey on Deep Learning in Medical Image Analysis Medical Image Analysis - 2017

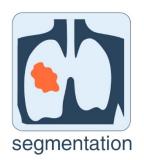
Deep Learning in Medical Imaging

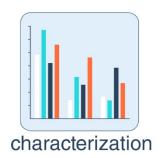


Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, et al.

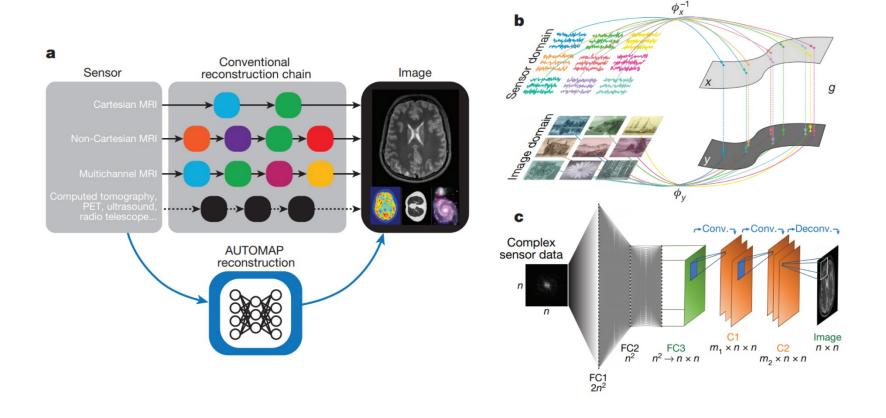
Artificial Intelligence in Radiology



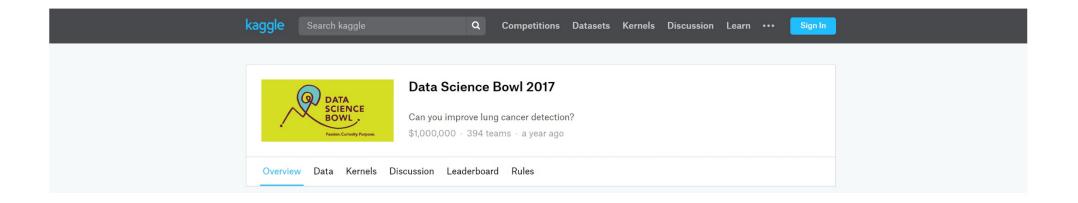


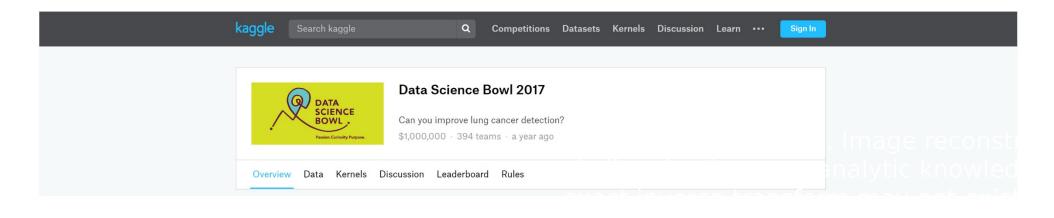


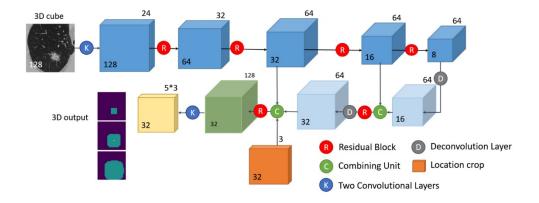
Reconstruction



Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen & Matthew S Rosen

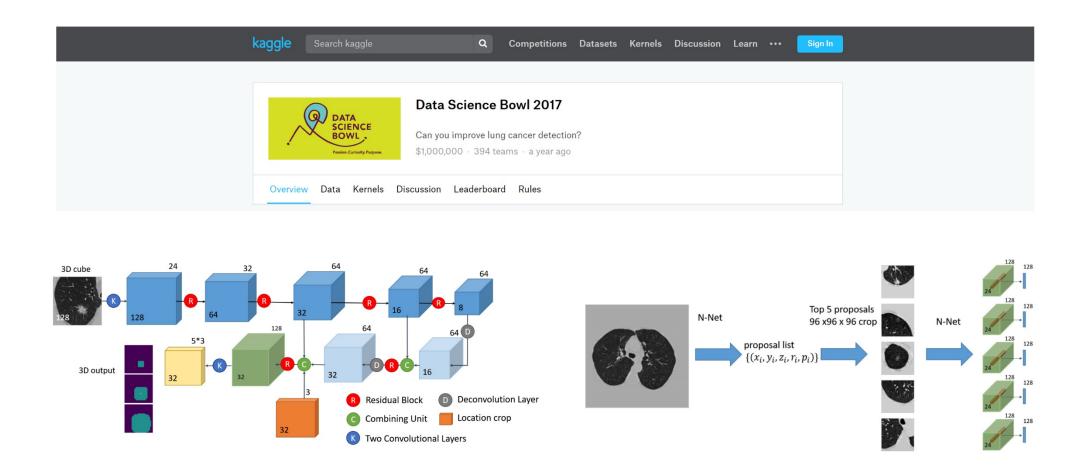






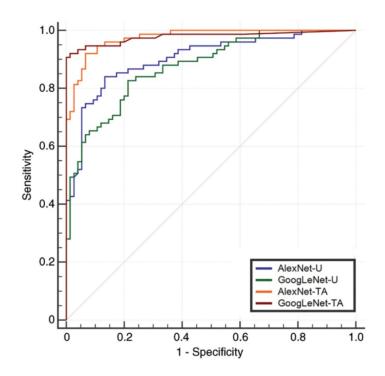
Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu & Sen Song

Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network arxiv.org/abs/1711.08324



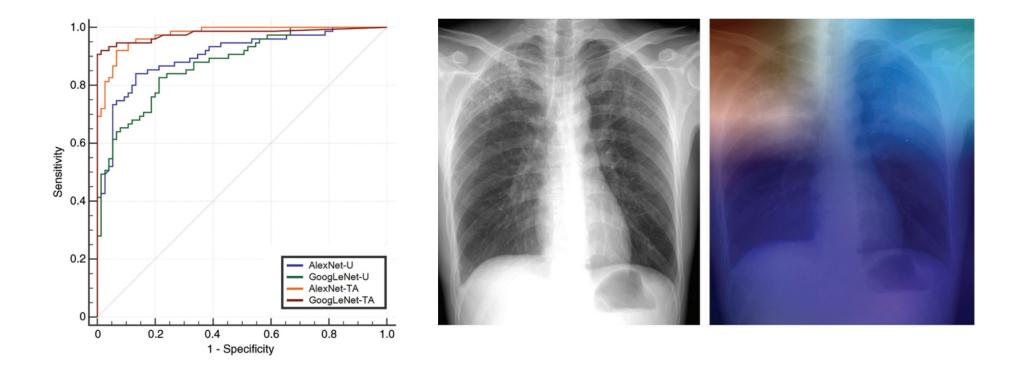
Fangzhou Liao, Ming Liang, Zhe Li, Xiaolin Hu & Sen Song

Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network arxiv.org/abs/1711.08324



Paras Lakhani & Baskaran Sundaram

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks Radiology - 2017



Paras Lakhani & Baskaran Sundaram

Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks Radiology - 2017

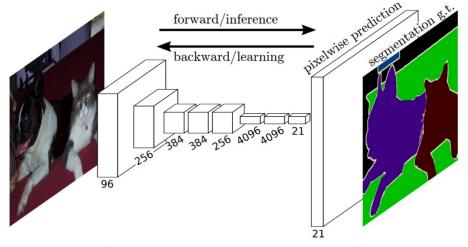


Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

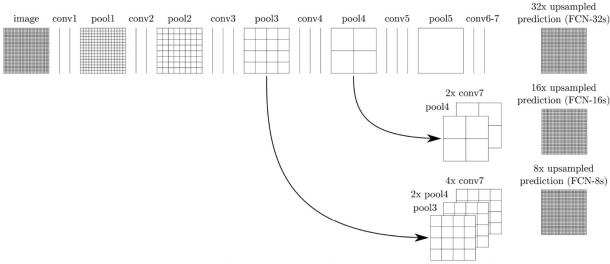
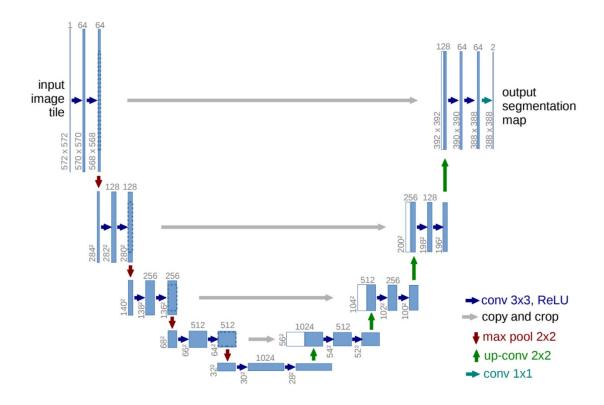
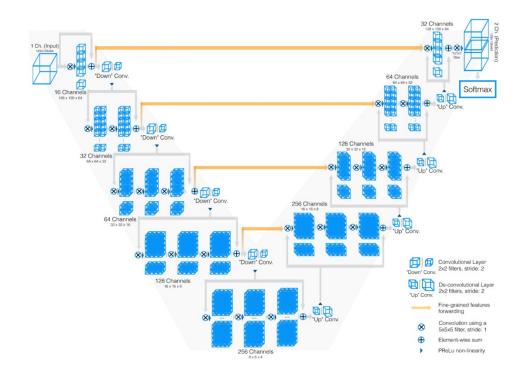


Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining predictions from both the final layer and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic information. Third row (FCN-8s): Additional predictions from pool3, at stride 8, provide further precision.

Jonathan Long, Evan Shelhamer & Trevor Darrell



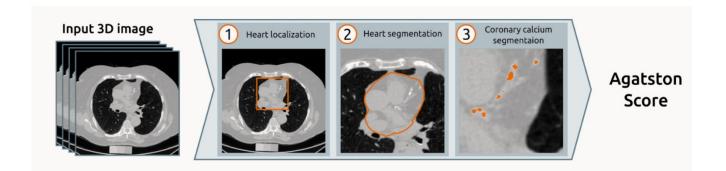


Olaf Ronneberger, Philipp Fischer & Thomas Brox

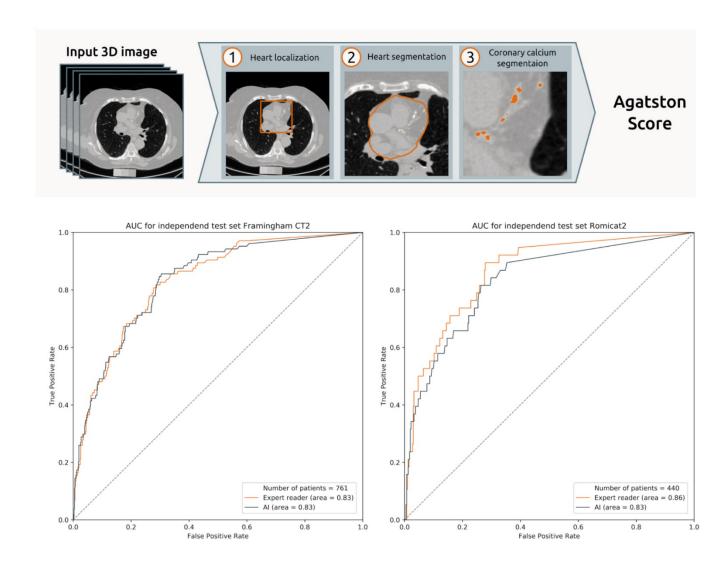
Fausto Milletari, Nassir Navab & Seyed-Ahmad Ahmadi

U-Net: Convolutional Networks for Biomedical Image Segmentation MICCAI - 2015

V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation arxiv.org/abs/1606.04797



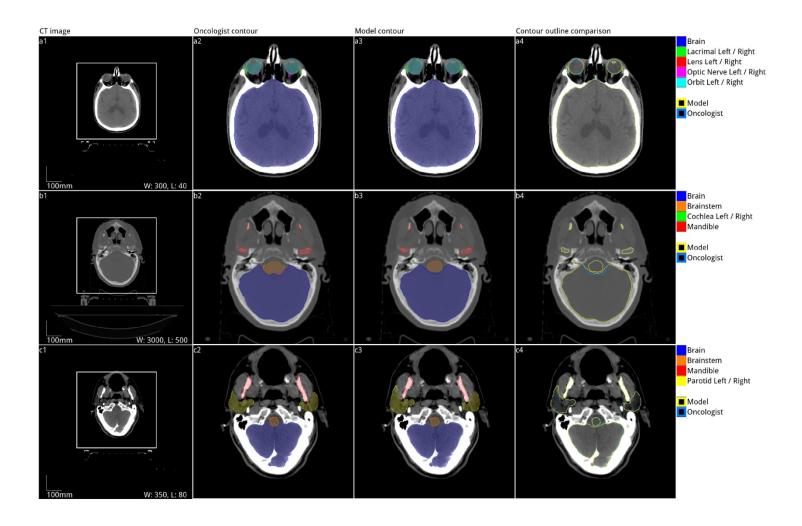
Roman Zeleznik, Parastou Eslami, Borek Foldyna, et al.



Roman Zeleznik, Parastou Eslami, Borek Foldyna, et al.

Deep Convolutional Neural Networks to Predict Cardiovascular Risk from Non-contrast Computed Tomography Images Under Review - 2018

Segmentation for Radiotherapy



Stanislav Nikolov, Sam Blackwell, Ruheena Mendes, et al.

Deep Learning to Achieve Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy Medical Image Computing & Computer Assisted Intervention (MICCAI) - 2018

Segmentation for Radiotherapy

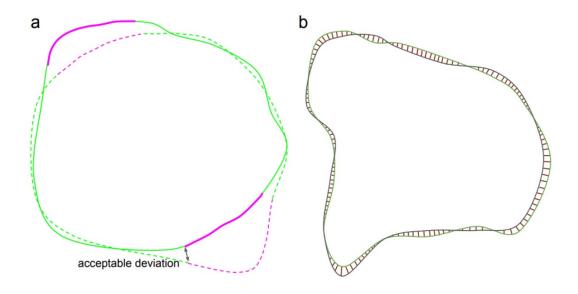
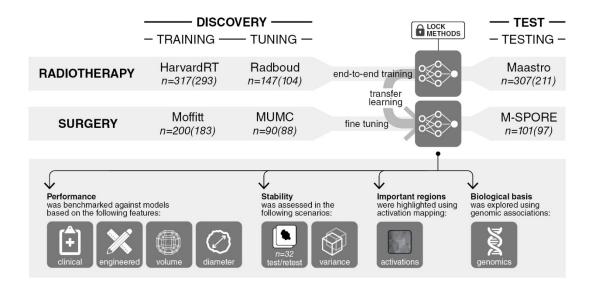
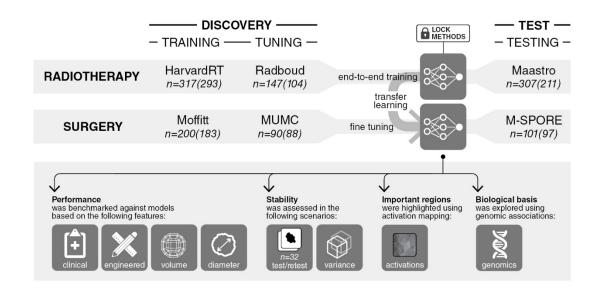


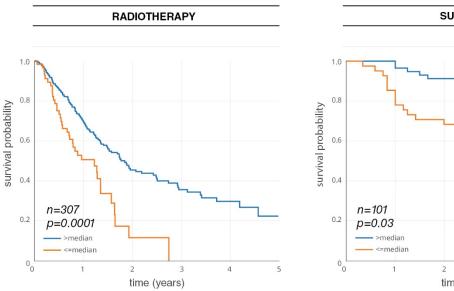
Figure 3 | Surface DSC performance metric. (a) Illustration of the computation of the surface DSC. Continuous line: predicted surface. Dashed line: ground truth surface. Black arrow: the maximum margin of deviation which may be tolerated without penalty, hereafter referred to by τ . Note that in our use case each OAR has an independently calculated value for τ . Green: acceptable surface parts (distance between surfaces $\leq \tau$). Pink: unacceptable regions of the surfaces (distance between surfaces $> \tau$). The proposed surface DSC metric reports the good surface parts compared to the total surface (sum of predicted surface area and ground truth surface area). (b) Illustration of the determination of the organ-specific tolerance. Green: segmentation of an organ by oncologist A. Black: segmentation by oncologist B. Red: distances between the surfaces. We defined the organ-specific tolerance as the 95th percentile of the distances collected across multiple segmentations from a subset of seven TCIA scans, where each segmentation was performed a radiographer arbitrated by an oncologist, neither of whom had seen the scan previously.

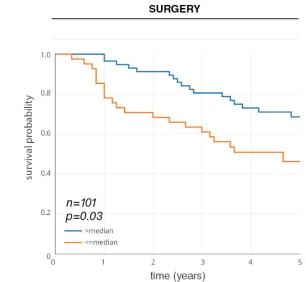
Stanislav Nikolov, Sam Blackwell, Ruheena Mendes, et al.



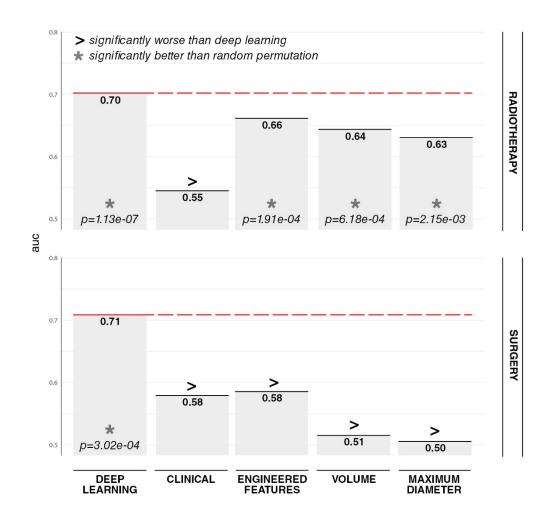
Ahmed Hosny, Chintan Parmar, Thibaud Coroller, et al.





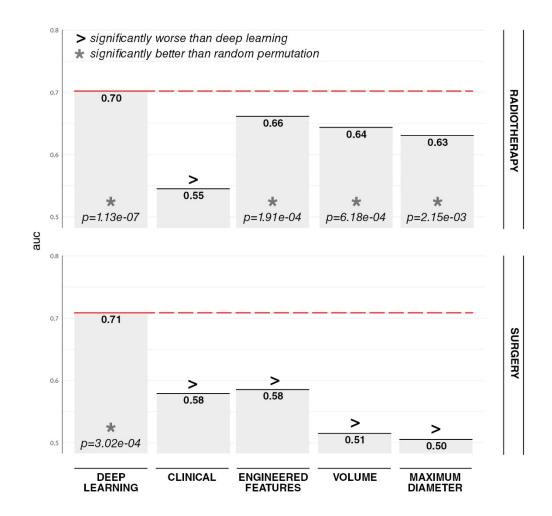


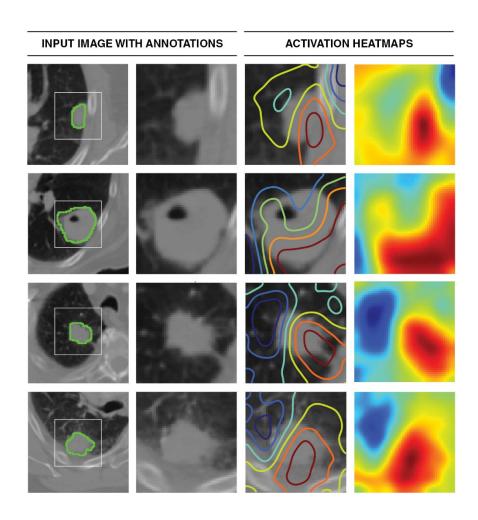
Ahmed Hosny, Chintan Parmar, Thibaud Coroller, et al.



Ahmed Hosny, Chintan Parmar, Thibaud Coroller, et al.

Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study Under Review

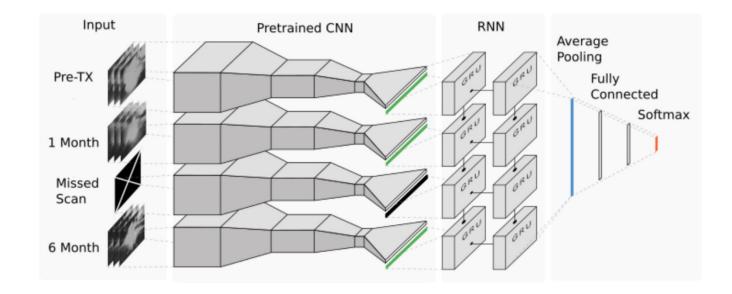




Ahmed Hosny, Chintan Parmar, Thibaud Coroller, et al.

Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-Cohort Radiomics Study Under Review

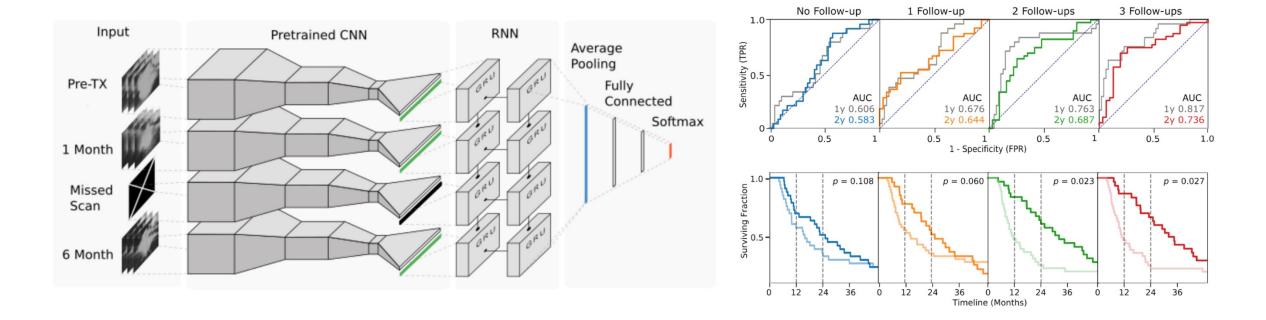
Monitoring



Yiwen Xu, Ahmed Hosny, Roman Zeleznik, et al.

Non-invasive Tracking of Lung Cancer Treatment Response Using Deep Learning-based Longitudinal Image Analysis Under Review

Monitoring



Yiwen Xu, Ahmed Hosny, Roman Zeleznik, et al.

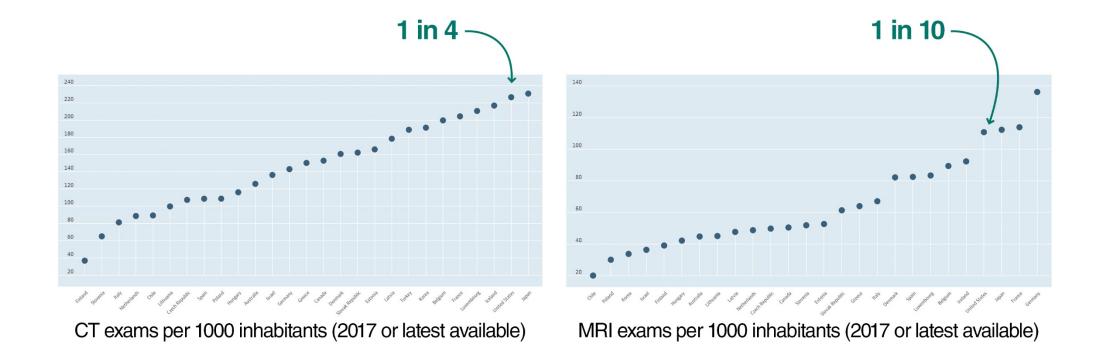
Non-invasive Tracking of Lung Cancer Treatment Response Using Deep Learning-based Longitudinal Image Analysis Under Review

Deep Learning

Applications in Medical Imaging

Challenges

Data, Data, and Data



OECD

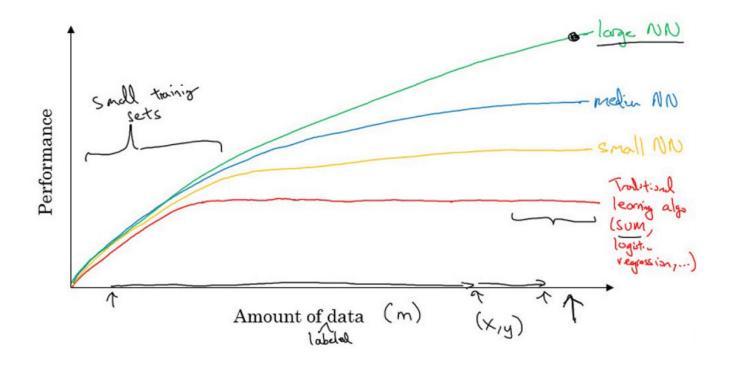
Health at a Glance 2017: OECD Indicators
The Organisation for Economic Co-operation and Development (OECD) - 2017

Data Curation

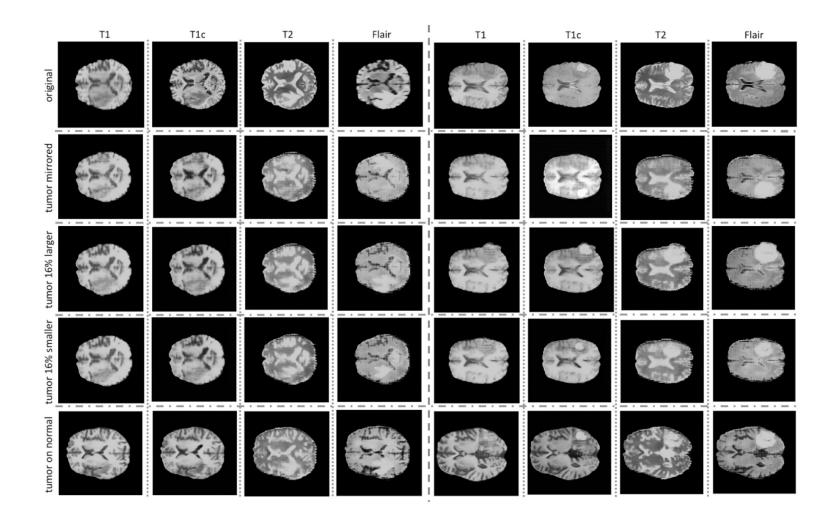
Claire Downs

The Pros and Cons of Amazon Mechanical Turk
The Daily Dot

Scale vs Performance

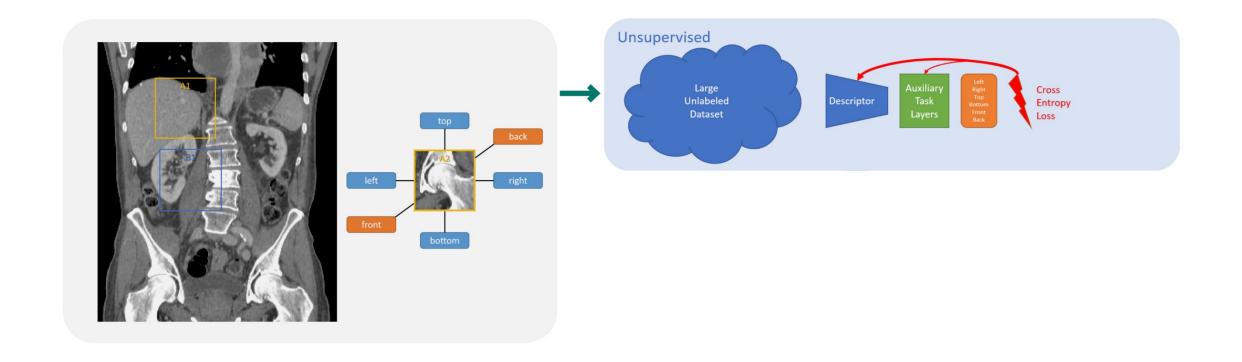


Unsupervised Learning



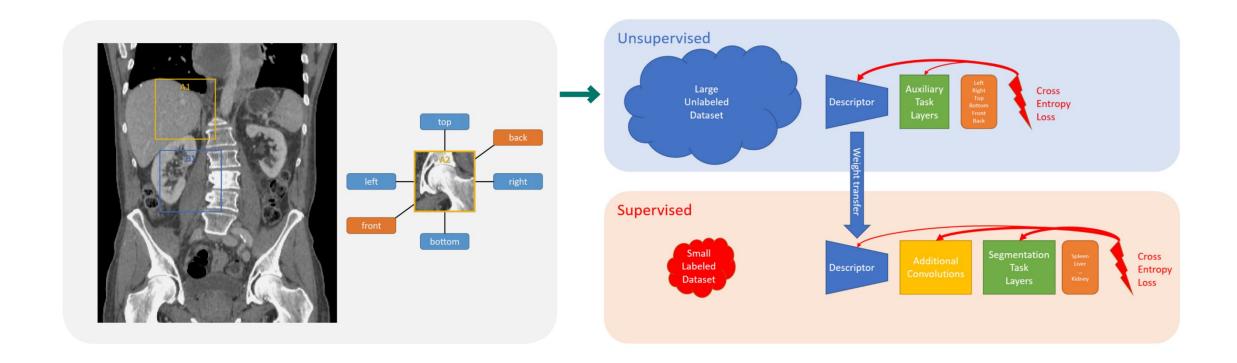
Hoo-Chang Shin, Neil A Tenenholtz, Jameson K Rogers, et al.

Self-Supervised Learning



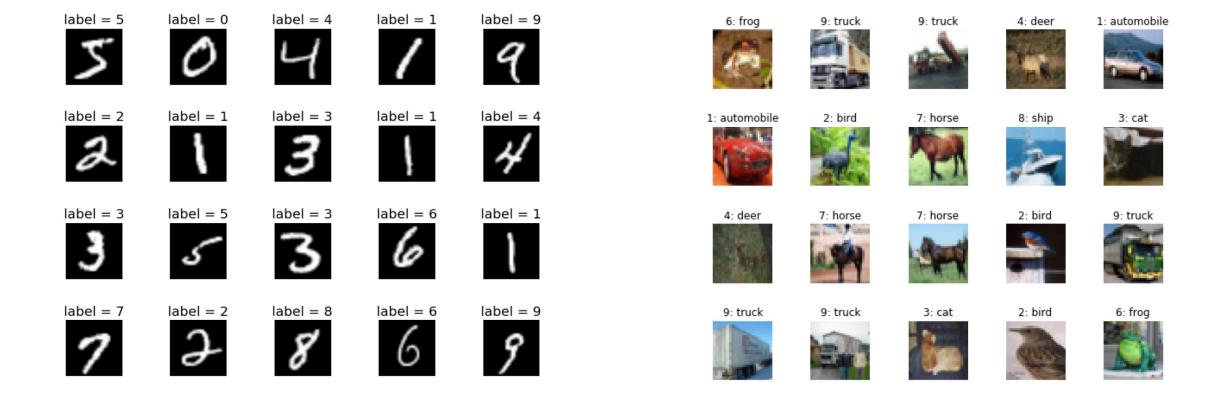
Max Blendowski, Hannes Nickisch & Mattias P Heinrich

Self-Supervised Learning



Max Blendowski, Hannes Nickisch & Mattias P Heinrich

Benchmarking Datasets



Yann LeCun, Corinna Cortes & Christopher JC Burges

Alex Krizhevsky

The MNIST Database of Handwritten Digits yann.lecun.com/exdb/mnist & corochann.com

The CIFAR-10 dataset cs.toronto.edu/~kriz/cifar.html

Interpretability

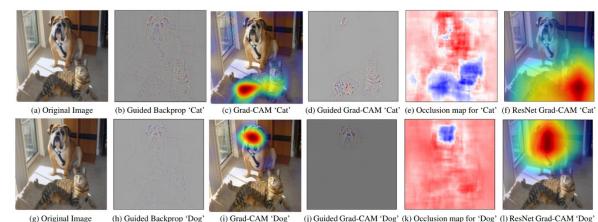
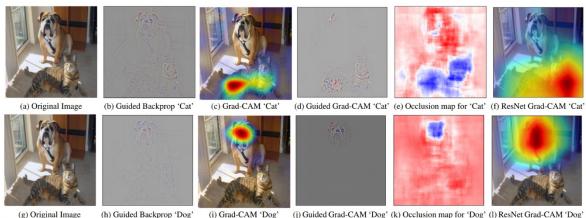


Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG and ResNet. (b) Guided Backpropagation [46]: highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-resolution class-discriminative visualizations.Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e), while being orders of magnitude cheaper to compute. (f, 1) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, 1), red regions corresponds to high score for class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

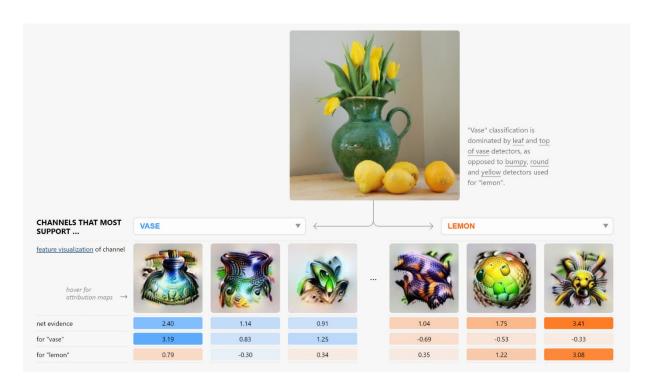
Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, et al.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization IEEE International Conference on Computer Vision (ICCV) - 2017

Interpretability



(g) Original image (h) Guided Backprop Dog (f) Grad-CAM Dog (g) Occilision map for Dog (f) ResNet Grad-CAM Dog (g) Occilision map for Dog (f) ResNet Grad-CAM Dog (g) Occilision map for Dog (f) ResNet Grad-CAM Dog (g) Occilision map for Dog (f) ResNet Grad-CAM Dog (g) Occilision map for Dog (f) ResNet Grad-CAM Dog (g) Occilision map for Dog (f) ResNet Grad-CAM Dog (g) Occilision for VGG and ResNet. (b) Guided Backpropagation [46]: highlights all contributing features. (c, f) Grad-CAM (ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-resolution class-discriminative visualizations. Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e), while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (d, f, i, l), red regions corresponds to high score for class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.



Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, et al.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization IEEE International Conference on Computer Vision (ICCV) - 2017

Chris Olah, Arvind Satyanarayan, Ian Johnson, et al.

The Building Blocks of Interpretability distill.pub

Regulatory Aspects

Company	FDA Approval	Indication
Aidoc	August 2018	CT Brain bleed diagnosis
iCAD	August 2018	Breast density via mammography
Zebra Medical	July 2018	Coronary calcium scoring
Bay Labs	June 2018	Echocardiogram EF determination
Neural Analytics	May 2018	Device for paramedic stroke diagnosis
IDx	April 2018	Diabetic retinopathy diagnosis
Icometrix	April 2018	MRI brain interpretation
Imagen	March 2018	X-ray wrist fracture diagnosis
Viz.ai	February 2018	CT Stroke diagnosis
Arterys	February 2018	Liver and lung cancer (MRI,CT) diagnosis
MaxQ-Al	January 2018	CT Brain bleed diagnosis
Alivecor	November 2017	Atrial fibrillation detection via Apple Watch
Arterys	January 2017	MRI heart interpretation

Eric Topol

Regulatory Aspects

Company	FDA Approval	Indication
Aidoc	August 2018	CT Brain bleed diagnosis
iCAD	August 2018	Breast density via mammography
Zebra Medical	July 2018	Coronary calcium scoring
Bay Labs	June 2018	Echocardiogram EF determination
Neural Analytics	May 2018	Device for paramedic stroke diagnosis
IDx	April 2018	Diabetic retinopathy diagnosis
Icometrix	April 2018	MRI brain interpretation
Imagen	March 2018	X-ray wrist fracture diagnosis
Viz.ai	February 2018	CT Stroke diagnosis
Arterys	February 2018	Liver and lung cancer (MRI,CT) diagnosis
MaxQ-Al	January 2018	CT Brain bleed diagnosis
Alivecor	November 2017	Atrial fibrillation detection via Apple Watch
Arterys	January 2017	MRI heart interpretation

What is ground truth data?

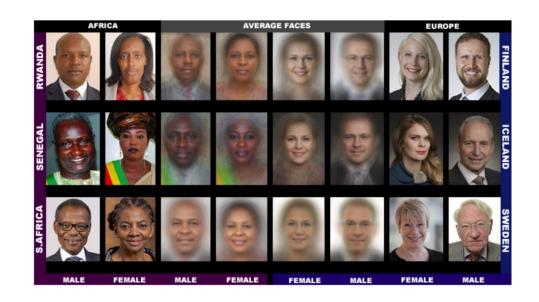
Data as an active ingredient in models

Life-long learning models

Eric Topol

FDA Approvals for AI in Medicine twitter.com/EricTopol/status/1028642832171458563

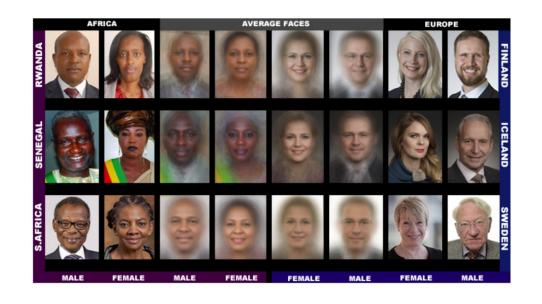
Ethical Challenges



Joy Buolamwini & Timnit Gebru

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification Conference on Fairness, Accountability, and Transparency - 2018

Ethical Challenges



Joy Buolamwini & Timnit Gebru

Julia Angwin, Jeff Larson, Surya Mattu & Lauren Kirchner

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification Conference on Fairness, Accountability, and Transparency - 2018

Machine Bias **ProPublica - 2016**

Ethical Breaches in Health Care

About the ICO / News and events / News and blogs /

Royal Free - Google DeepMind trial failed to comply with data protection law

Date 03 July 2017
Type News

The ICO has ruled the Royal Free NHS Foundation Trust failed to comply with the Data Protection Act when it provided patient details to Google DeepMind.

The Trust provided personal data of around 1.6 million patients as part of a trial to test an alert, diagnosis and detection system for acute kidney injury.

But an ICO investigation found several shortcomings in how the data was handled, including that patients were not adequately informed that their data would be used as part of the test.

The Trust has been asked to commit to changes ensuring it is acting in line with the law by signing an undertaking.

United Kingdom Information Commissioner's Office

Google DeepMind Trial Failed to Comply with Data Protection Law ico.org.uk

Ethical Breaches in Health Care

About the ICO / News and events / News and blogs /

Royal Free - Google DeepMind trial failed to comply with data protection law

Date **03 July 2017**Type **News**

The ICO has ruled the Royal Free NHS Foundation Trust failed to comply with the Data Protection Act when it provided patient details to Google DeepMind.

The Trust provided personal data of around 1.6 million patients as part of a trial to test an alert, diagnosis and detection system for acute kidney injury.

But an ICO investigation found several shortcomings in how the data was handled, including that patients were not adequately informed that their data would be used as part of the test.

The Trust has been asked to commit to changes ensuring it is acting in line with the law by signing an undertaking.

PROPUBLICA TOPICS V SERIES V NEWS APPS GET INVOLVED IMPACT ABOUT OF

- Sloan Kettering's Cozy Deal With
- **У** Start-Up Ignites a New Uproar
- A for-profit venture with exclusive rights to use the cancer center's vast archive
- of tissue slides has generated concerns among pathologists at the hospital, as well as experts in nonprofit law and corporate governance.
- by Charles Ornstein, ProPublica, and Katie Thomas, The New York Times, Sept. 20, 4:10 p.m. EDT

United Kingdom Information Commissioner's Office

Google DeepMind Trial Failed to Comply with Data Protection Law ico.org.uk

Charles Ornstein & Katie Thomas

Sloan Kettering's Cozy Deal with Start-Up Ignites a New Uproar propublica.org & nytimes.com

Ethical Challenges

Algorithms mirroring human bias

Unethical algorithms

Exacerbate tension between improving health and generating profit

Learned helplessness

Algorithm as third-party "actor" into the physician-patient relationship

Security

JFWS

Employee error exposed Blue Cross patient data for 3 months

by **Jessica Davis** | September 21, 2018

An employee uploaded a file containing member information to a public-facing website in April, but officials did not discover

NEWS

Ransomware attack breaches 40,800 patient records in Hawaii

by **Jessica Davis** September 13, 2018

The Fetal Diagnostic Institute of the Pacific was able to restore data from backups, and with help from a cybersecurity firm wipe the

MEWS

Phishing attack breaches 38,000 patient records at Legacy Health

by **Jessica Davis** August 22, 2018

The hackers went undetected for several weeks at the Portland, Oregon-based health system.

MEMS

417,000 Augusta University Health patient records breached nearly one year ago

by **Jessica Davis** August 17, 2018

The Georgia provider was hit by two cyberattacks in September 2017, but did no explain when the breach was discovered.

NEWS

Canadian pharmacist fined for routinely accessing health records of acquaintances

by **Lynne Minion** August 13, 2018

She snooped in the EHRs of nearly four dozen people over two years.

NEWS

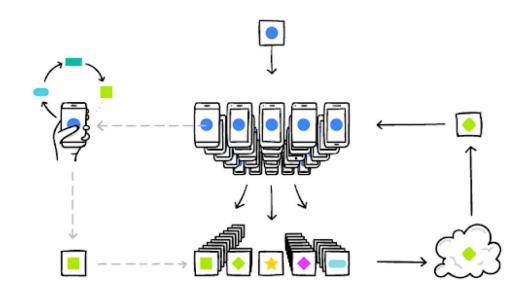
1.4M records breached in UnityPoint Health phishing attack

by **Jessica Davis** July 31, 2018

This is the second breach for the health system this year, and the biggest health data breach of 2018 in the U.S.

Healthcare IT News Staff

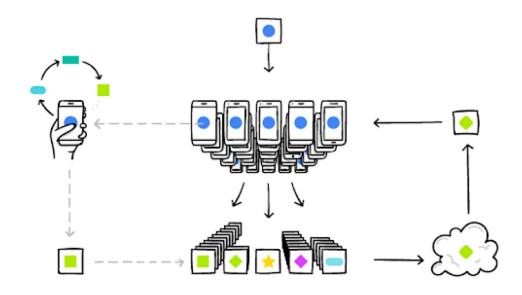
Security

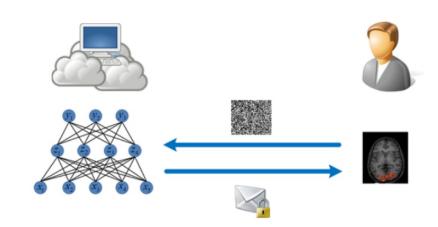


Brendan McMahan, Eider Moore, Daniel Ramage, et al.

Communication-Efficient Learning of Deep Networks from Decentralized Data 20th International Conference on Artificial Intelligence and Statistics (AISTATS) - 2017

Security





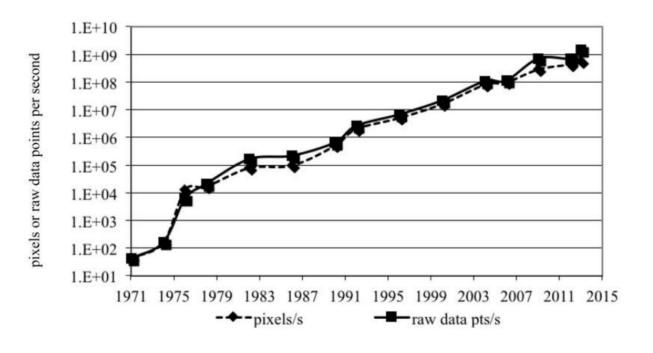
Brendan McMahan, Eider Moore, Daniel Ramage, et al.

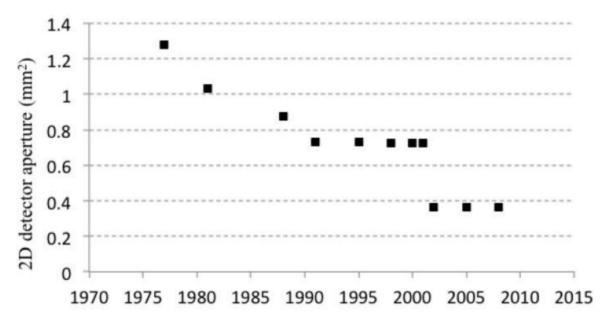
Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, et al.

Communication-Efficient Learning of Deep Networks from Decentralized Data 20th International Conference on Artificial Intelligence and Statistics (AISTATS) - 2017

CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput and Accuracy International Conference on Machine Learning (ICML) - 2016

A Step in the Right Direction



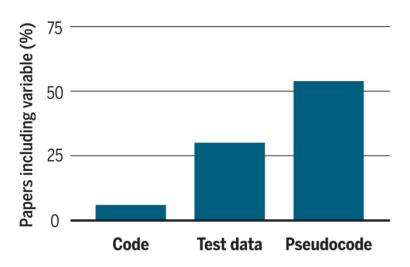


Norbert J Pelc

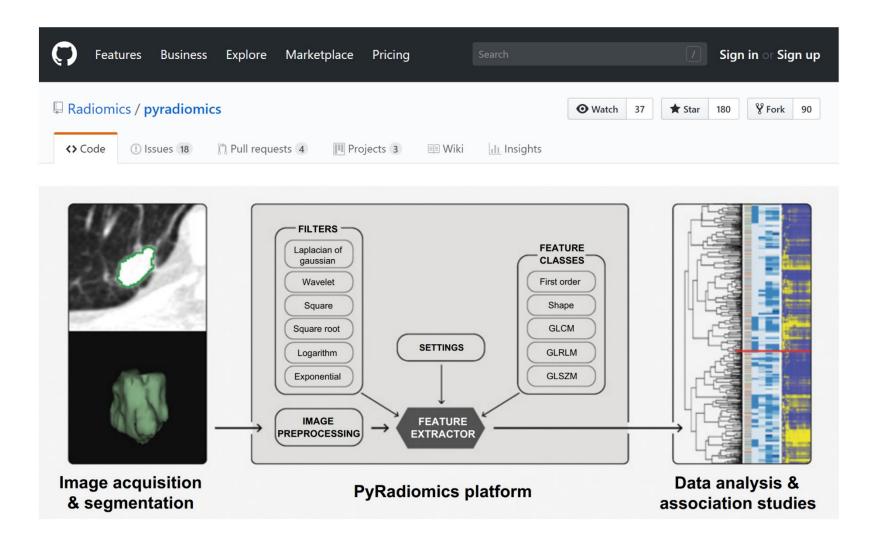
Reproducibility

Code break

In a survey of 400 artificial intelligence papers presented at major conferences, just 6% included code for the papers' algorithms. Some 30% included test data, whereas 54% included pseudocode, a limited summary of an algorithm.



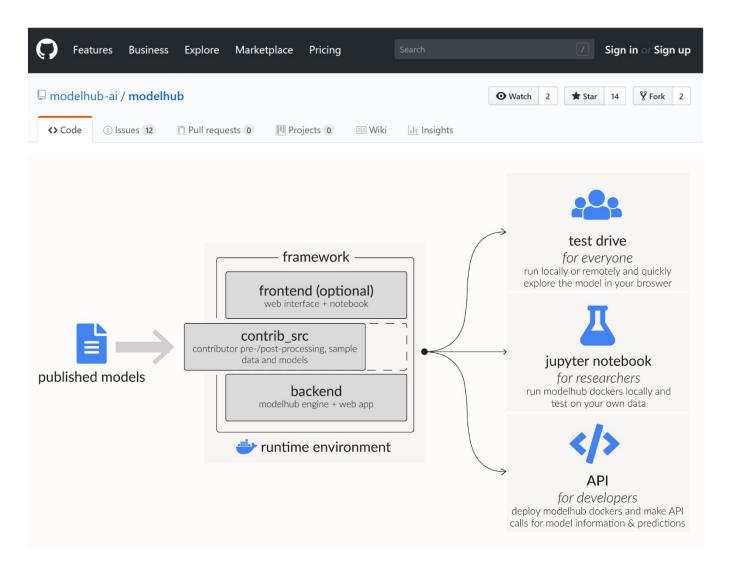
PyRadiomics



Joost JM van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, et al.

Computational Radiomics System to Decode the Radiographic Phenotype Cancer Research - 2017

Modelhub



Ahmed Hosny, Michael Schwier, Andriy Y Fedorov and Hugo JWL Aerts

Modelhub: Plug & Predict Solutions for Reproducible AI Research modelhub.ai

Mind The Hype

Advances in artificial intelligence (AI) will transform modern life by reshaping transportation, health, science, finance, and the military. To adapt public policy, we need to better anticipate these advances. Here we report the results from a large survey of machine learning researchers on their beliefs about progress in AI. Researchers predict AI will outperform humans in many activities in the next ten years, such as translating languages (by 2024), writing high-school essays (by 2026), driving a truck (by 2027), working in retail (by 2031), writing a bestselling book (by 2049), and working as a surgeon (by 2053). Researchers believe there is a 50% chance of AI outperforming humans in all tasks in 45 years and of automating all human jobs in 120 years, with Asian respondents expecting these dates much sooner than North Americans. These results will inform discussion amongst researchers and policymakers about anticipating and managing trends in AI.

Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang & Owain Evans

